3.113 \(\int (a+a \sec (c+d x))^2 \sqrt{e \tan (c+d x)} \, dx\)

Optimal. Leaf size=309 \[ -\frac{a^2 \sqrt{e} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d}+\frac{a^2 \sqrt{e} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} d}+\frac{2 a^2 (e \tan (c+d x))^{3/2}}{3 d e}+\frac{a^2 \sqrt{e} \log \left (\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d}-\frac{a^2 \sqrt{e} \log \left (\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d}+\frac{4 a^2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac{4 a^2 \cos (c+d x) E\left (\left .c+d x-\frac{\pi }{4}\right |2\right ) \sqrt{e \tan (c+d x)}}{d \sqrt{\sin (2 c+2 d x)}} \]

[Out]

-((a^2*Sqrt[e]*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d)) + (a^2*Sqrt[e]*ArcTan[1 + (Sqr
t[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d) + (a^2*Sqrt[e]*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*S
qrt[e*Tan[c + d*x]]])/(2*Sqrt[2]*d) - (a^2*Sqrt[e]*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + Sqrt[2]*Sqrt[e*Tan[c +
 d*x]]])/(2*Sqrt[2]*d) - (4*a^2*Cos[c + d*x]*EllipticE[c - Pi/4 + d*x, 2]*Sqrt[e*Tan[c + d*x]])/(d*Sqrt[Sin[2*
c + 2*d*x]]) + (2*a^2*(e*Tan[c + d*x])^(3/2))/(3*d*e) + (4*a^2*Cos[c + d*x]*(e*Tan[c + d*x])^(3/2))/(d*e)

________________________________________________________________________________________

Rubi [A]  time = 0.335517, antiderivative size = 309, normalized size of antiderivative = 1., number of steps used = 19, number of rules used = 15, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.6, Rules used = {3886, 3476, 329, 297, 1162, 617, 204, 1165, 628, 2613, 2615, 2572, 2639, 2607, 32} \[ -\frac{a^2 \sqrt{e} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d}+\frac{a^2 \sqrt{e} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} d}+\frac{2 a^2 (e \tan (c+d x))^{3/2}}{3 d e}+\frac{a^2 \sqrt{e} \log \left (\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d}-\frac{a^2 \sqrt{e} \log \left (\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d}+\frac{4 a^2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac{4 a^2 \cos (c+d x) E\left (\left .c+d x-\frac{\pi }{4}\right |2\right ) \sqrt{e \tan (c+d x)}}{d \sqrt{\sin (2 c+2 d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^2*Sqrt[e*Tan[c + d*x]],x]

[Out]

-((a^2*Sqrt[e]*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d)) + (a^2*Sqrt[e]*ArcTan[1 + (Sqr
t[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d) + (a^2*Sqrt[e]*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*S
qrt[e*Tan[c + d*x]]])/(2*Sqrt[2]*d) - (a^2*Sqrt[e]*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + Sqrt[2]*Sqrt[e*Tan[c +
 d*x]]])/(2*Sqrt[2]*d) - (4*a^2*Cos[c + d*x]*EllipticE[c - Pi/4 + d*x, 2]*Sqrt[e*Tan[c + d*x]])/(d*Sqrt[Sin[2*
c + 2*d*x]]) + (2*a^2*(e*Tan[c + d*x])^(3/2))/(3*d*e) + (4*a^2*Cos[c + d*x]*(e*Tan[c + d*x])^(3/2))/(d*e)

Rule 3886

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandI
ntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 2613

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a^2*(a*Sec[
e + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 1))/(b*f*(m + n - 1)), x] + Dist[(a^2*(m - 2))/(m + n - 1), Int[(a*Sec
[e + f*x])^(m - 2)*(b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && (GtQ[m, 1] || (EqQ[m, 1] && EqQ[
n, 1/2])) && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rule 2615

Int[Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]]/sec[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[(Sqrt[Cos[e + f*x]]*Sqrt[b*
Tan[e + f*x]])/Sqrt[Sin[e + f*x]], Int[Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]], x], x] /; FreeQ[{b, e, f}, x]

Rule 2572

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(Sqrt[a*Sin[e +
 f*x]]*Sqrt[b*Cos[e + f*x]])/Sqrt[Sin[2*e + 2*f*x]], Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f},
 x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2607

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int (a+a \sec (c+d x))^2 \sqrt{e \tan (c+d x)} \, dx &=\int \left (a^2 \sqrt{e \tan (c+d x)}+2 a^2 \sec (c+d x) \sqrt{e \tan (c+d x)}+a^2 \sec ^2(c+d x) \sqrt{e \tan (c+d x)}\right ) \, dx\\ &=a^2 \int \sqrt{e \tan (c+d x)} \, dx+a^2 \int \sec ^2(c+d x) \sqrt{e \tan (c+d x)} \, dx+\left (2 a^2\right ) \int \sec (c+d x) \sqrt{e \tan (c+d x)} \, dx\\ &=\frac{4 a^2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\left (4 a^2\right ) \int \cos (c+d x) \sqrt{e \tan (c+d x)} \, dx+\frac{a^2 \operatorname{Subst}\left (\int \sqrt{e x} \, dx,x,\tan (c+d x)\right )}{d}+\frac{\left (a^2 e\right ) \operatorname{Subst}\left (\int \frac{\sqrt{x}}{e^2+x^2} \, dx,x,e \tan (c+d x)\right )}{d}\\ &=\frac{2 a^2 (e \tan (c+d x))^{3/2}}{3 d e}+\frac{4 a^2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}+\frac{\left (2 a^2 e\right ) \operatorname{Subst}\left (\int \frac{x^2}{e^2+x^4} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{d}-\frac{\left (4 a^2 \sqrt{\cos (c+d x)} \sqrt{e \tan (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \sqrt{\sin (c+d x)} \, dx}{\sqrt{\sin (c+d x)}}\\ &=\frac{2 a^2 (e \tan (c+d x))^{3/2}}{3 d e}+\frac{4 a^2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac{\left (a^2 e\right ) \operatorname{Subst}\left (\int \frac{e-x^2}{e^2+x^4} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{d}+\frac{\left (a^2 e\right ) \operatorname{Subst}\left (\int \frac{e+x^2}{e^2+x^4} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{d}-\frac{\left (4 a^2 \cos (c+d x) \sqrt{e \tan (c+d x)}\right ) \int \sqrt{\sin (2 c+2 d x)} \, dx}{\sqrt{\sin (2 c+2 d x)}}\\ &=-\frac{4 a^2 \cos (c+d x) E\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sqrt{e \tan (c+d x)}}{d \sqrt{\sin (2 c+2 d x)}}+\frac{2 a^2 (e \tan (c+d x))^{3/2}}{3 d e}+\frac{4 a^2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}+\frac{\left (a^2 \sqrt{e}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}+2 x}{-e-\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} d}+\frac{\left (a^2 \sqrt{e}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}-2 x}{-e+\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} d}+\frac{\left (a^2 e\right ) \operatorname{Subst}\left (\int \frac{1}{e-\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 d}+\frac{\left (a^2 e\right ) \operatorname{Subst}\left (\int \frac{1}{e+\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 d}\\ &=\frac{a^2 \sqrt{e} \log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} d}-\frac{a^2 \sqrt{e} \log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} d}-\frac{4 a^2 \cos (c+d x) E\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sqrt{e \tan (c+d x)}}{d \sqrt{\sin (2 c+2 d x)}}+\frac{2 a^2 (e \tan (c+d x))^{3/2}}{3 d e}+\frac{4 a^2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}+\frac{\left (a^2 \sqrt{e}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d}-\frac{\left (a^2 \sqrt{e}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d}\\ &=-\frac{a^2 \sqrt{e} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d}+\frac{a^2 \sqrt{e} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d}+\frac{a^2 \sqrt{e} \log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} d}-\frac{a^2 \sqrt{e} \log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} d}-\frac{4 a^2 \cos (c+d x) E\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sqrt{e \tan (c+d x)}}{d \sqrt{\sin (2 c+2 d x)}}+\frac{2 a^2 (e \tan (c+d x))^{3/2}}{3 d e}+\frac{4 a^2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}\\ \end{align*}

Mathematica [C]  time = 1.27132, size = 106, normalized size = 0.34 \[ \frac{4 a^2 \sin \left (\frac{1}{2} (c+d x)\right ) \cos ^5\left (\frac{1}{2} (c+d x)\right ) \sec (c+d x) \sqrt{e \tan (c+d x)} \sec ^4\left (\frac{1}{2} \tan ^{-1}(\tan (c+d x))\right ) \left (2 \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},-\tan ^2(c+d x)\right )+\text{Hypergeometric2F1}\left (\frac{3}{4},1,\frac{7}{4},-\tan ^2(c+d x)\right )+1\right )}{3 d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sec[c + d*x])^2*Sqrt[e*Tan[c + d*x]],x]

[Out]

(4*a^2*Cos[(c + d*x)/2]^5*(1 + 2*Hypergeometric2F1[1/2, 3/4, 7/4, -Tan[c + d*x]^2] + Hypergeometric2F1[3/4, 1,
 7/4, -Tan[c + d*x]^2])*Sec[c + d*x]*Sec[ArcTan[Tan[c + d*x]]/2]^4*Sin[(c + d*x)/2]*Sqrt[e*Tan[c + d*x]])/(3*d
)

________________________________________________________________________________________

Maple [C]  time = 0.263, size = 1480, normalized size = 4.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2*(e*tan(d*x+c))^(1/2),x)

[Out]

-1/6*a^2/d*2^(1/2)*(cos(d*x+c)+1)^2*(e*sin(d*x+c)/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(-3*I*EllipticPi(((1-cos
(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c
)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2+3*I*EllipticPi(((1-c
os(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x
+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2+3*((-1+cos(d*x+c))
/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*
EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*cos(d*x+c)^2+3*((-1+cos(d*x+c))
/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*
EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*cos(d*x+c)^2-24*((-1+cos(d*x+c)
)/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)
*EllipticE(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)^2+12*((-1+cos(d*x+c))/sin(d*x+
c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticF
(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)^2-3*I*cos(d*x+c)*EllipticPi(((1-cos(d*x+
c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin
(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)+3*I*cos(d*x+c)*((1-cos(d*x+c)+sin(d*x+
c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*Ellipti
cPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+3*cos(d*x+c)*((1-cos(d*x+c)+sin(d*x+c)
)/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticP
i(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))+3*cos(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/
sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(
((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-24*cos(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/s
in(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticE(((
1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))+12*cos(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(
1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF(((1-cos(d*x+c)
+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))+14*cos(d*x+c)^2*2^(1/2)-12*cos(d*x+c)*2^(1/2)-2*2^(1/2))/sin(d*x+c
)^5/cos(d*x+c)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(e*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(e*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a^{2} \left (\int \sqrt{e \tan{\left (c + d x \right )}}\, dx + \int 2 \sqrt{e \tan{\left (c + d x \right )}} \sec{\left (c + d x \right )}\, dx + \int \sqrt{e \tan{\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2*(e*tan(d*x+c))**(1/2),x)

[Out]

a**2*(Integral(sqrt(e*tan(c + d*x)), x) + Integral(2*sqrt(e*tan(c + d*x))*sec(c + d*x), x) + Integral(sqrt(e*t
an(c + d*x))*sec(c + d*x)**2, x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt{e \tan \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(e*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^2*sqrt(e*tan(d*x + c)), x)